Chemistry 425/395 Spectroscopy and Structural Elucidation

Dr. David Crumrine Spring 2010

Office: FH 212 MW 5:30-6:50, FH 105

Phone: 773-508-3114 Fax: 773-508-3086 email: dcrumri@luc.edu

This course will introduce the use of spectroscopy for the elucidation of organic structures. The methods will include IR spectroscopy, UV-Vis spectroscopy, Mass spectrometry, NMR techniques (¹H, ¹³C, and 2D), X-ray, and related computational techniques. The course will focus on the application of these methods in solving structures of organic molecules, with some instrument theory, some history, and method development.

Course Information:

 1. Grading:
 Midterm Exam 1
 100pts 22.2%

 Midterm Exam 2
 100pts 22.2%

 Final Exam
 150pts 33.3%

 Problem Sets #1-3
 75pts 16.7%

 Presentation
 25pts 5.6%

 Total
 450pts 100%

- 2. Office Hours: MW 4:30- to before class in FH 212; other times, by appointment.
- **3. Textbook** P. Crews, J. Rodriguez, M. Jaspars, "Organic Structure Analysis 2nd Ed," OxfordUniv.Press, 2009. This text is the only source material permitted during exams.

4. Other General References SpectroscopyTexts:

Lambert, Shurve, Lightner, Cooks, "Organic Structural Spectroscopy", Prentice-Hall, Upper Saddle River, NJ, 1998. Silverstein, Webster, Kiemie "Spectroscopic Identification of Organic Compounds, 6th Ed. Wiley 2005. Pavia, Lampman, & Kriz "Introduction to Spectroscopy 3rd Ed" Saunders College Pub, 2001. Williams and Fleming, "Spectroscopic Methods in Organic Chemistry" 5thEd.McGrawHill, 1995 Field, Sternhell, Kalman, Organic Structures from Spectra 4th Ed., Wiley, 2008

5. Other Spectroscopy Texts:

Breitmaier, "Structure Elucidation by NMR in Organic Chemistry"

Derome, "Modern NMR Techniques for Chemistry Research" Pergamon, 1987.

Duddeck, "Structure Elucidation by Modern NMR"

Jacobsen,"NMR Spectroscopy Explained" Wiley, 2007.

Kemp, "Organic Spectroscopy" 3rd Ed. Freeman, NY 1991.

Macomber, "A Complete Introduction to Modern NMR Spectroscopy," Wiley, 1998.

McLafferty & Turecek, "Interp. of Mass Spectra" 4th Ed", University Science Books, 1993.

Nelson, J. H., "NMR Spectroscopy" Prentice Hall, NJ, 2003.

Pretsch, Buhlmann, Affolter, "Structure Det. of Organic Compds 3rd Ed." Springer, 2000

Wehrli, Marchand,& Wehrli "Interp. of Carbon-13 NMR Spectra" 2nd Ed, Wiley, 1988.

6. Computational Suites

ACD Labs, Hyperchem, ChemDraw Professional ChemWindows-Spectroscopy & newer versions

7. Schedule

Spectroscopy Chemistry 425-/395, Spring 2010 Lecture Outline

(Tentative)

Date	Char	Tentative	Lecturei
Jan 20	1	Background Info: Introduction; Analysis or Separation of mixtures; Purification.	DC
Jan 25	2/3	¹ H NMR: History, definitions, theory, chemical shifts, assignments, integration	JB
Jan 27	4	¹ H NMR: coupling constants, signs, classification of spin systems, problems.	JB
Feb 1	2	NMR: relaxation (T ₁ & T ₂), simulations, solvent effects, problems	JB
Feb 3	3/4	¹³ C NMR: Theory, Chemical shifts, Coupling, Decoupling, nOe, Assignments,	DC
Feb 8	5-5.3		DC
Feb10		NMR: Computations, Simulations, Problem Solving Problem Set #2	DC
Feb 15	9	IR: Theory of Dispersive & FTIR, characteristic absorptions, symmetry	JC
Feb 17	9	IR: absorptions cont 'd, problem solving, databases, Raman, AFM, SEM	JC
Feb 22	10	UV-Vis: Theory, excited states, transitions, chromophores, Woodward-Fieser rul	es DC
Feb 24	10	UV-Vis:, CD, ORD, etc. Diode-array LC detectors.	DC
Mar 1		Problem Solving combining NMR, IR, and UV/Vis	DC
Mar 3		Midterm Exam #1	
Mar 8-10 Mid-semester break			
Mar 15	5 1 pg	27EPR, Electronic relaxation, ENDOR	RH
Mar 17	7 2	More NMR: VT, Heteroatoms, CIDNP, Solids Problem Set #3 due	DF
Mar 22	2 11A	ACS2DNMR: Introduction, Theory, COSY, TOCSY, HETCOR, nOesy	DF
Mar 24	114	ACS2D NMR: Techniques, indirect detection, HMQC, Acronyms, & Applications	DF
Mar 29)	2D NMR: Problem solving	DF
Mar 31		X-Ray Diffraction	\mathbf{DL}
Apr 5	6	MS: Theory, Instrumentation, and Combined Techniques	DC
Apr 7	7	MS: Analysis of small and large molecules	DC
Apr 12	8	MS: Fragmentation processes in e- ionization MS, problem solving	DC
Apr 14		Midterm Exam #2	
Apr 19		Larger Molecules & Other Techniques	
Apr 21		Student Presentations	
Apr 26		Student Presentations	
Apr 28		Review Day & Problem Solving practice	
May 2		Final Exam	
Lectur	ers:	J. <u>Babler, J.Ciszek, D.French</u> , R. <u>Holz</u> , <u>D.Liu</u>	

hits; "Organic Spectroscopy" gave 5 x 10⁶ hits; "Spectroscopy Problems" gave 3.5 x 10⁶ hits; etc.

Twelve Examples are listed below.

- **1.** en.wikipedia.org/wiki/Spectroscopy The first listing from "Spectroscopy," lots of info and branches.
- **2.** spectroscopyNOW.com spectroscopy and spectrometry portal **Spectroscopy** portal addressing mass spectrometry, NMR, MRI, x-ray, atomic, Raman, IR, UV, proteomics and chemometrics and informatics techniques. You can register for info. www.spectroscopynow.com
- 3. WebSpectra Problems in NMR and IR Spectroscopy

More NMR practice problems and a great outline of spectral assignments methods. www.chem.ucla.edu/~webspectra/ - 21k. mainly ¹H and ¹³C only a few others.

- 4. <u>Spectroscopy Home</u> Problem Sets: Infrared **Spectroscopy** Problem Set: 1H NMR Problem Set: 13C NMR Problem Set · Mass **Spectroscopy** Problem Set · Integrated **Spectroscopy** Problems ... www.chem.uic.edu/web1/OCOL-II/WIN/SPEC.HTM 3k
- **5.** Organic Chemistry On Line A good introduction to modern NMR spectroscopy. ... A nice collection of problems using all the spectroscopy methods discussed here. ...

 www.cem.msu.edu/~reusch/VirtualText/Spectrpy/spectro.htm http://www.cis.rit.edu/htbooks/nmr/ {exceptional}
- **6.** NMR Spectroscopy Theory A nice little intro to NMR spectroscopy theory. teaching.shu.ac.uk/hwb/chemistry/tutorials/molspec/nmr1.htm
- 7. <u>Spectroscopy</u> Spectroscopic databases can aid the chemist in spectral interpretation and structure elucidation. Searches can be conducted by inputting then cds.dl.ac.uk/cds/datasets/spec/specinfo/spectro.html
- **8.** Organic Structure Elucidation Workbook http://www.nd.edu/~smithgrp/structure/workbook.html Good Problems ¹H, ¹³C and MS with relative difficulty. No answers included.
- **9.** <u>Spectroscopy Problems</u> We have used these **problems** for many years in the **spectroscopy** section of the **organic** chemistry lab and lecture courses. orgchem.colorado.edu/hndbksupport/specttutor/main.html 6k Problems include ¹H NMR and IR data with answers and some interpretation.
- 10. <u>CHP Spectroscopy</u> Spectroscopy is the use of the absorption, emission, or scattering of electromagnetic radiation by matter to qualitatively or quantitatively study the ... www.files.chem.vt.edu/chem-ed/spec/spectros.html <u>Cached</u> <u>Similar</u>
- 11. http://www.aist.go.jp/RIODB/SDBS/cgi-bin/cre_index.cgi Japanese Institute website with combined spectra. Used for early problem set.
- 12. http://nmrsg1.chem.indiana.edu/other_sites.html A long list of NMR related websites.