Chemistry 425/395 (Draft) Spectroscopy and Structural Elucidation

Dr. David Crumrine Spring 2013

Office: FH 212 MW 4:00-5:30, FH 105

Phone: 773-508-7463 or X 83114

Fax: 773-508-3086 email: dcrumri@luc.edu

This course will introduce the use of spectroscopy for the elucidation of organic structures. The methods will include IR spectroscopy, UV-Vis spectroscopy, Mass spectrometry, NMR techniques (¹H, ¹³C, and 2D), X-ray, and related computational techniques. The course will focus on the application of these methods in solving structures of organic molecules, with some instrument theory, some history, method development, and pertinent websites and books.

Course Information:

 1. Grading:
 Midterm Exam 1
 100pts 22.2%

 Midterm Exam 2
 100pts 22.2%

 Final Exam
 150pts 33.3%

 Problem Sets #1-3
 75pts 16.7%

 Presentation
 25pts 5.6%

 Total
 450pts 100%

- 2. Office Hours: MW 3:30- to before class in FH 212; other times, by appointment.
- **3. Textbook** Lambert, Shurve, Lightner, Cooks, "Organic Structural Spectroscopy 2/E", Prentice-Hall, Upper Saddle River, NJ, 2011. This text is the only source material permitted during exams.

4. Other General References SpectroscopyTexts:

P. Crews, Rodriguez, Jaspars, "Organic Structure Analysis 2nd Ed," OxfordUniversity.Press, 2009.

J.Lambert, Shurve, Lightner, Cooks, "Organic Structural Spectroscopy", Prentice-Hall, Upper Saddle River,NJ, 1998.

Silverstein, Webster, Kiemie "Spectroscopic Identification of Organic Compounds, 6th Ed. Wiley 2005.

Pavia, Lampman, Kriz, &Vyvyan "Introduction to Spectroscopy 4th Ed" Saunders College Pub, 2009.

Williams and Fleming, "Spectroscopic Methods in Organic Chemistry" 5thEd.McGrawHill, 1995

Field, Sternhell, Kalman, Organic Structures from Spectra 4th Ed., Wiley, 2008

5. Other Spectroscopy Texts:

Breitmaier, "Structure Elucidation by NMR in Organic Chemistry"

Derome, "Modern NMR Techniques for Chemistry Research" Pergamon, 1987.

Duddeck, "Structure Elucidation by Modern NMR"

Jacobsen,"NMR Spectroscopy Explained" Wiley, 2007.

Kemp, "Organic Spectroscopy" 3rd Ed. Freeman, NY 1991.

Macomber, "A Complete Introduction to Modern NMR Spectroscopy," Wiley, 1998.

McLafferty & Turecek, "Interp. of Mass Spectra" 4th Ed", University Science Books, 1993.

Nelson, J. H., "NMR Spectroscopy" Prentice Hall, NJ, 2003.

Pretsch, Buhlmann, Affolter, "Structure Det. of Organic Compds 3rd Ed." Springer, 2000

Wehrli, Marchand, & Wehrli "Interp. of Carbon-13 NMR Spectra" 2nd Ed, Wiley, 1988.

6. Computational Suites

ACD Labs, Hyperchem, ChemDraw Professional ChemWindows-Spectroscopy & newer versions

7. Schedule

Spectroscopy Chemistry 425-/395, Spring 2013 Lecture Outline

(Tentative)

Date	Chap	Topic Tentative	Lecturers
Jan 14	1	Background Info: Introduction; Analysis or Separation of mixtures; Purification.	DC
Jan 23	2/3	¹ H NMR: History, definitions, theory, chemical shifts, assignments, integration	DC
Jan 25	2/3	¹³ C NMR: Theory, Chemical shifts, Coupling/Decoupling, Assignments,	DC
Jan 30	4	Coupling constants, signs, classification of spin systems, Problems	DC
Feb 1	2	NMR: relaxation (T ₁ & T ₂), simulations, solvent effects, Problems	DC
Feb 6		NMR: Computations, Simulations, Problem Solving Problem Set 1	JB
Feb 8	5	¹³ C NMR: APT, Relaxation, INEPT, DEPT techniques	DC
Feb 13	11	IR: Theory of Dispersive & FTIR, characteristic absorptions, symmetry	DC
Feb 15	12	IR: absorptions cont' d, problem solving, databases, Raman, AFM, SEM	DC
Feb 20	13	UV-Vis: Theory, excited states, transitions, notation, (Prob Set 1 due .)	DC
Feb 22	14	UV-Vis:, chromophores Woodward-Fieser Rules, Charge Transfer, CD, ORD	DC
Feb 27	Boo	Reproblem Solving combining NMR, IR, and UV/Vis Problem Set 2 Websites?	DC
Feb 29		Midterm Exam #1	
Mar 5	-7	Mid-semester break ENJOY!	
Mar 12		2DNMR: Intro, Theory, Correlation w coupling COSY, TOCSY Prob Set #2 due	DC
Mar 14		2D NMR: Techniques, indirect detection, HMQC, Acronyms, & Applications	DC
Mar 19	6	2D NMR: Problem solving	DC
Mar 21		More NMR: (catchup if needed), VT, Heteroatoms, CIDNP,	DC
Mar 26		ACS X-Ray Diffraction	DL
Mar 28	}	ACS Midterm Exam #2	
Apr 2		MS: Theory, Instrumentation, and Sample Preparation	DC
Apr 4		MS: Ion activation and Fragmentation	DC
Apr 5		Easter Break	
Apr 9		MS Structural Analysis (Class is after 4:15.)	
Apr 11		MS: Quantitative Apps. and problem solving	DC
Apr 16		Larger Molecules & Other Techniques	
Apr 18		Student Presentations	
Apr 23		Student Presentations	
Apr 25		Student Presentations	
Apr 30		Review Day & Problem Solving practice	
May 2		Final Exam w Textbook	
Lecturers: J.Babler, D.Liu,			

Topics Not Covered: NIR, CD, ORD, 3 & 4 D-NMR, EPR, etc

Prob Set 1: 10 spectra from AIST (see below)

Prob Set 2: 5 from AIST + others Prob Set 3: 5 from anywhere

Version 12/11/2012

8. Spectroscopy Websites that may be useful (January 2012). Using Google: "Spectroscopy" gave 3.4×10^7 hits; "Organic Spectroscopy" gave 1.3×10^7 hits; "Organic Spectroscopy Problems" gave 7.9×10^6 hits; etc.

Twelve Examples are listed below.

- **1.** Wikipedia/ organic spectroscopy "Spectroscopy," lots of info and branches (NMR. IR, Woodward Rules).
- **2.** spectroscopyNOW.com spectroscopy and spectrometry portal (John Wiley & Sons) **Spectroscopy** portal addressing mass spectrometry, NMR, MRI, x-ray, atomic, Raman, IR, UV, proteomics and chemometrics and informatics techniques. You can register for info. www.spectroscopynow.com
- **3.** WebSpectra Problems in NMR and IR Spectroscopy
 More NMR practice problems and a great outline of spectral assignments methods. www.chem.ucla.edu/~webspectra/ 21k. mainly ¹H, ¹³C, and IR only a few others.
- **4.** Organic Chemistry On Line A good introduction to modern NMR spectroscopy. ... A nice collection of problems using all the spectroscopy methods discussed here. www.cem.msu.edu/~reusch/VirtualText/Spectrpy/spectro.htm -
- 5. http://www.cis.rit.edu/htbooks/nmr/ {exceptional exposition on NMR}
- **6.** NMR Spectroscopy Theory A nice little intro to NMR & IR spectroscopy theory. teaching.shu.ac.uk/hwb/chemistry/tutorials/molspec/nmr1.htm
- 7. <u>Spectroscopy</u> Spectroscopic databases can aid the UK chemist in spectral interpretation and structure elucidation. Searches can be conducted https://cds.dl.ac.uk/cds/help/overview.html
- **8.** Organic Structure Elucidation Workbook http://www.nd.edu/~smithgrp/structure/workbook.html Good ¹H, ¹³C and MS **Problems** with relative difficulty listed. No answers included.
- **9.** <u>Spectroscopy Problems</u> We have used these **problems** for many years in the **spectroscopy** section of the **organic** chemistry lab and lecture courses. orgchem.colorado.edu/hndbksupport/specttutor/main.html 6k Problems include ¹H NMR and IR data with answers and some interpretation.
- 10. <u>CHP Spectroscopy</u> Spectroscopy is the use of the absorption, emission, or scattering of electromagnetic radiation by matter to qualitatively or quantitatively study..Not only organic ... www.files.chem.vt.edu/chem-ed/spec/spectros.html <u>Cached</u> <u>Similar</u>
- 11. http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/cre_index.cgi?lang=eng_SDBS from AIST of Japan with combined spectra. http://www.aist.go.jp/RIODB/SDBS/cgi-bin/cre_index.cgi (Japanese version) A recent announcement says service depends on availability of electricity after last year's earthquake.
- **12**. <u>www.ups.edu/faculty/hanson/chemwebsites/organicwebsites.htm</u> A list of organic related sites. However, the sites listed first and fourth did not work for me as of Jan 2012.